MPEX Diagnostics

<u>T.M. Biewer</u>, T. Bjorholm, G.T. Boyd, J.F. Caneses, D. Elliott, T. Gray, W. Sides Oak Ridge National Laboratory 2nd MPEX Users Research Forum (MURF2) September 13-14, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline: MPEX Diagnostics (15+5 minutes)

- Design Overview of Diagnostics (10 min)
- Progress since 1st MURF (5 min)
- Summary

MPEX Project interdependencies

Design Overview of MPEX Diagnostics System

- The Diagnostics Systems cover all diagnostics for the scientific exploration of MPEX.
 - machine protection
 - basic machine control
 - advanced plasma control
 - evaluation and physics studies
 - **Phase I:** Those Diagnostics necessary to demonstrate "first plasma" milestone •
 - Machine protection, and basic machine control. _
 - D₂ plasma parameters at target: B, n_e, T_e, T_i
 - Phase II: Diagnostics necessary for the scientific exploration of MPEX, i.e. to meet near • term science goals.
 - D.O.E. requested the inclusion of these systems in the baseline design. —
 - These systems cannot be precluded by early-stage design choices.

The diagnostic portfolio of Proto-MPEX has been described in a variety of publications and PhD theses.

Many diagnostics will move from Proto-MPEX to MPEX resulting in significant cost savings for Phase I

Ph	ase I: "first plasmc	x" Phase	II: to meet science	goals
	Diagnostic		Diagnostic	
	OES-HiRes		Surface Analysis Station	
	OES-Survey		Thomson 2, 3	
	Baratrons		TALIF	
	Thomson Scattering		CO ₂ Interferometer	
	Pyrometer		Bolometers	
	Visible Cameras		IR Camera 2, 3,	
	IR Camera		Microwave Diodes	
	Filterscopes		AXUV/SXR Diodes	
	RGA		LIBS/LIDS/LIAS	
	TC/Flouroptics			

Current Design of MPEX Facility

MPEX diagnostic port planes

Diagnostic planes:

MPEX dump and helicon regions

MPEX ECH and ICH regions

MPEX PMI region

Thomson Scattering

- Based on hardware used on Proto-MPEX to demonstrate EBW heating physics
 - <u>T.M. Biewer, et al., RSI, 2016</u>
 - <u>N. Kafle, et al., RSI 2018</u>
 - T.M. Biewer, et al., Phys. Plasmas, 2018
- QuantaRay Pro350 2 J Nd:YAG laser
 - Frequency doubled to 532 nm
 - 10 Hz measurement rate
 - 10 ns Measurement interval
- Single laser could be used in multiple passes, as on Proto-MPEX
- Princeton Instruments intensified camera and Kaiser Optical Holospec f1.8.
- **1 region in phase I**, 2 additional regions in phase II.

Optical Emission Spectroscopy

Survey

- Ocean Optics HR4000 compact spectrometer from Proto-MPEX
 - Easy expansion to additional channels
- Identify impurity species, good for target material tracking
- Important diagnostic for safety and operational control
 - Unknown impurities can be an early warning sign
 - Appearance of different species indicates changes in bulk plasma conditions.

High Resolution

- McPherson 1m 2051 spectrometer from Proto-MPEX
- PI PhotonMax 512b EMCCD detector
- Doppler measurements for T_i and v_i, with inversion if necessary
 - C.J. Beers, et al., Phys Plasmas, 2018
- Ar II trace impurities for ion measurements

IR camera for thermal imaging of heat flux on target

- FLIR A655SC IR Camera used extensively on Proto-MPEX
 - Heat load monitoring on the target
 - <u>M. Showers, et al., RSI, 2016</u>
 - <u>M. Showers, et al., Phys Plasmas, 2018</u>
 - <u>C. Lau, et al., Phys Plasmas, 2019</u>

- Periscope design allows for flexibility of installation
 - 1 camera for phase I, additional cameras for phase II

MPEX required measurements classified by role

Measurement	Parameter	Role	Range	Time resp.
Helicon window temperature	T _{hel}	1.a1	20–500°C	>1 Hz
ICH window temperature	T _{ICH}	1.a1	20-500°C	>1 Hz
Skimmer temperature	T _{skim}	1.a1	20-500°C	>1 Hz
Limiter temperature	T _{lim}	1.a1	20-2500°C	>1 Hz
Dump plate temperature	T _{dump}	1.a2	20-2500°C	>1 Hz
Ave. Target temperature	T _{tar}	1.a2	20-2500°C	>1 Hz
Target Heat Flux distribution	Q _{tar}	1.b	0–40 MW/m ²	>10 Hz
Dump Heat Flux distribution	Q _{dump}	1.b	0–20 MW/m ²	>10 Hz
Target Particle Flux	G _{tar}	1.b	10 ²² –10 ²⁵ particles/m ²	>100 Hz
Dump Particle Flux	G _{dump}	1.b	10 ²¹ -10 ²⁴ particles/m ²	>1 Hz
Magnetic field (SC windings)	В	1.b	0.01–5 T	>1 Hz
Magnetic field (Cu windings)	В	1.b	0.01–5 T	>1 Hz
Total Neutral Gas pressure	P ₀	1.a2	10 ⁻⁷ –100 Pa	>1 kHz
Helicon Power	P _{helicon}	1.a2	0–20 kW	>1 kHz
ICH Power	P _{ICH}	1.a2	0–500 kW	>1 kHz
ECH Power	P _{ECH}	1.a2	0–500 kW	>1 kHz
Stray microwave power	P _m	1.a2	0–500 kW	>1 kHz
Soft X-ray monitoring	P _{SXR}	2		>10 kHz
Radiated Power	P _{rad}	2	1–1000 kW	>100 Hz
Line-averaged electron density	∫(Ne*dL)/dL	1.a2	10 ¹⁸ –10 ²² m ⁻³	>1 kHz

Measurement	Parameter	Role	Range	Time resp.
Plasma dynamics	D _{alpha}	2		100 kHz
On-axis Electron Temperature	T _e (0)	1.b	1–50 eV	>1 Hz
Electron Temperature profile	T _e (r)	2	1–50 eV, >10 radial points	>1 Hz
On-axis Electron Density	n _e (0)	1.b	10 ¹⁸ –10 ²² m ⁻³	>1 Hz
Electron Density profile	n _e (r)	2	10 ¹⁸ –10 ²² m ⁻³ , >10 radial points	>1 Hz
Line-averaged Ion Temperature	∫(Ti*dL)/dL	1.b	1–50 eV	>10 Hz
Ion Temperature profile	T _i (r)	2	1–50 eV, >5 radial points	>10 Hz
Neutral Gas density	n ₀	2	10 ¹⁸ –10 ²² m ⁻³	
Plasma Flow	V	2	0–100 km/s	>1 Hz
Impurity Species Monitoring	nz	2	Spectral line emission	~1 Hz
Impurity Species Monitoring	P _Z	2	1–100 amu	~1 Hz
In-vessel imaging	TV	1.a2	Camera coverage of critical areas	>1 kHz
Target Surface imaging		2	Features ~<10 mm × 10 mm	
Target Surface erosion		2	Feature height ~<100 nm	
Window transmission	T _{win}	1.a2	0–100%	~1 Hz

Current Design of MPEX Facility

The **Surface Analysis Station** is a key element of the MPEX Science Mission.

- Co-located with MPEX device to enable on-site analysis without vacuum break.
- The science mission of MPEX is inherently tied to the sophistication of the SAS instrumentation
 - Concept SAS has been designed (March 2019)
 - ORNL panel of experts have identified key elements (June 2019)
 - International panel of experts convened (Oct. 2019) as part of funded "advanced Conceptual Design" activities
- 1st MPEX Users Research Forum (MURF) was held and report published
 - https://www.osti.gov/biblio/1630500/

Recommendations from 1st MURF

- Experiments in MPEX should strive to take advantage of the range of measurement capabilities: *in situ, in vacuo,* and *ex situ* at ORNL.
- A single "do all" SAS design is not required.
- Arrive at a reasonable instrumentation package for a "first generation (single) SAS" that will be incorporated into the MPEX facility baseline project design and cost.
- The prioritized instrumentation package should include:
 - a scanning electron microscope (SEM) to image
 - surface morphology with energy-dispersive X-ray (EDX) analysis to examine surface composition,
 - a compact high-energy, light ion beam for Nuclear Reaction Analysis (NRA) to study presence/retention of light isotopes,
 - and laser induced break-down spectroscopy (LIBS) to enable moderate depth profiling of static retained gases.
- FIB/SEM capability inclusion warrants further discussion.

Summary

- The Diagnostics WBS covers **all diagnostics for the scientific exploration of MPEX**. They include:
 - Diagnostics which are needed for machine protection as well as basic and advanced plasma control,
 - Surface analysis diagnostics co-located with the MPEX facility, which may be utilized to examine material samples after plasma exposure.
- A baseline diagnostic set is planned based on Proto-MPEX.
- Additional ports have been incorporated in the baseline design to enable future diagnostic upgrades and expansion

