

MPEX High Level Commissioning

Juergen Rapp for MPEX team September 13, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline of this talk

- Commissioning and high-level commissioning goals
- Performance/availability/reliability increase over time
- Major operational risks
- Capability increase and impact on science program
- Suggestions for staged science program

Preliminary MPEX Key Performance Parameters as agreed with FES

- KPP 1: **Demonstration of First Plasma** for one minute operation, with:
 - Electron density, $n_e = 1e19 \text{ m}^{-3}$
 - Electron and ion temperatures, $T_e = T_i = 5 eV$
 - Magnetic field at the target, $B_{target} = 0.5 T$

 KPP2: Demonstration of the magnet system to full magnetic field for 4 hours.

MPEX shall be designed to achieve UPPs to fulfill mission need

Parameter	Mission Need	MPEX NPP	MPEX UPP
n _e target	>10 ¹⁹ m ⁻³	5 x 10 ¹⁹ m ⁻³	$10^{21} \mathrm{m}^{-3}$
T _e target	up to 15 eV	12 eV	15 eV
T _i target	up to 15 eV	12 eV	20 eV
B target	1 T	1 T	1 T
Plasma diameter	10 cm	3 to 10 cm	3 to 10 cm
$\Gamma_{\rm I}$ target	$> 10^{23} \text{ m}^{-2} \text{s}^{-1}$	up to 10 ²⁴ m ⁻² s ⁻¹	$> 10^{24} \text{ m}^{-2} \text{s}^{-1}$
Min angle of B to target	oblique	5 degrees	5 degrees
P target, parallel	10 MW/m ²	10 MW/m ²	40 MW/m ²
P target, perpendicular	10 MW/m ²	up to 10 MW/m ²	10 MW/m ²
Total ion fluence / plasma duration	$10^{31} \mathrm{m}^{-2}$	$10^{28} \mathrm{m}^{-2}$	$10^{31} \mathrm{m}^{-2}$

- Nominal Performance Parameter (NPP) to be achieved after first operational campaigns
- Ultimate Performance Parameter (UPP) to be achieved after extensive operational period (~ 5 years)

Annual operation targets

- 100 S/T days annual average [PR372-R]
- Possibility to operate 3 shifts for 12 days consecutive days [PR373-R]
- Scheduled maintenance 25% of operation time [PR374-R], hence 25 days annual average
- MPEX shall achieve 55% inherent availability (mean up time divided by mean up time and non-scheduled maintenance) [PR402-R], hence not more than 82 days non-scheduled maintenance annual average
- MPEX overall operational availability shall be more than 40% annual average [PR405-R]
- Scheduled long-term maintenance and upgrades, 8 weeks per year [PR406-I]
- Reliability of all MPEX systems of ONE occurrence per 10⁶ seconds [PR418-R]

Notional draft schedule

Notional generic schedule here shown for calendar year 2027 with three campaigns and one long summer shutdown:

- 100 planned days for science and technology.
- 25 planned (short term) maintenance days.
- 35 program contingency days to compensate for unplanned device failures.
- 100 days for repair and long-term maintenance. Please note that any long in-vessel maintenance work will be restricted to long summer shutdown.
- Restart of systems and commissioning is part of maintenance program time.

CAK RIDGE National Laboratory

MPEX increase in capability/reliability/science operations

- Operation days and availability [%] 80 User reliability is defined as a user getting his experiment executed as requested in an assigned campaign including the contingency time. It is assumed that the experiment is planned such that the heating systems are commissioned to that 70 requested performance. 60 50 40 30 20 10 $\mathbf{0}$ C2 C1 C3 C4 C5 C6 C7 C9 C8 C10 C11 C12 C13 C14 C15 2027 2028 2029 2030 2031 Hi-C days Inherent Availability [%] User Reliability [%] S/T davs
- MPEX high-level commissioning to full capability and availability over 5 years (similar to SNS).
- 15 campaigns over 5 years.
- Number of S/T days increase from 32 in first year to 100 after 5 years.
- Commissioning of systems after 5 years will be included in maintenance days.

CAK RIDGE

National Laboratory

MPEX successively increases capability

- Increase in performance
 parameters and plasma duration vs
 time.
- The performance parameters are related to the plasma parameters T_e , T_i , n_e , Γ_i , $q_{//}$ in KPP, NPP and UPP (see slides before) only.
- Emphasis on pulse duration extension vs plasma performance increase is shown here as compromise but can be adjusted to the community needs.

	Performance	Duration	Fluence [m ⁻²]
C1	KPP	1 hr	10 ²⁶
C2	KPP	8 hrs	10 ²⁷
C3	NPP	10 sec	10 ²⁷
C4	NPP	1 min	10 ²⁷
C5	NPP	1 hr	10 ²⁸
C6	NPP	8 hrs	10 ²⁸
C7	UPP	10 sec	10 ²⁹
C8	UPP	1 min	10 ²⁹
C9	UPP	1 hr	10 ²⁹
C10	UPP	8 hrs	10 ²⁹
C11	UPP	36 hrs	10 ³⁰
C12	UPP	36 hrs	10 ³⁰
C13	UPP	4 days, 3 shift	10 ³⁰
C14	UPP	4 days, 3 shift	10 ³⁰
C15	UPP	Million seconds	10 ³¹

MPEX increase in injected energy

Major operational risks

- Arcing may restrict injected power
 - Limitations: maximum target heat flux, T_e, T_i
- Density drop at high auxiliary heating
 - Limitations: maximum n_e, target ion flux, target ion fluence
- Target contamination due to impurities from helicon
 - Limitations: maximum ion fluence, restricted to high T_e scenarios, restricted to biased target operation, restricted to operation with seeded high-Z nobel gas impurities, restrictions in inclined target operation

Capability increase (tentatively)

- C1, C2 no science program
- C3: KPP performance with increasing pulse duration, NPP short pulse, second-generation helicon window, ITER pulse fluence
- C4: Inclined target operation, high recycling regime
- C5: NPP increasing pulse duration, PISCES-like fluence, wall conditioning methods applied
- C6: NPP increasing pulse duration, third-generation helicon window and second-generation ICH window possibly reduced impurity production.
- C7: Full performance (UPP) in short pulses
- C8: Demonstration of all electron heating scenarios: EBW, Upper Hybrid, 2nd harmonic ECH and potentially Whistler
- C9: Demonstration of full operational domain in short pulses (whole reactor divertor plasma range)
- C10: Increase of pulse duration, He-cooled PFCs for high temperature PFC tests
- C11: Start of rad operation, Magnum-like fluence
- C12 C15: Increase in pulse duration and fluence, reaching million sec pulses in C15.
 CAK RIDGE National Laboratory

MPEX Science exploitation evolution (example)

- 1. Short pulse high-Te regime (C3 to C4)
 - i. Erosion/redeposition in high-T_e regimes with and without seeded impurities
 - ii. Erosion/redeposition in high-T_e regimes, effect of magnetic pre-sheath
 - iii. Effect of tilted angle of erosion of pre-manufactured surface morphology structures
- 2. Long pulse high-Te regime (C5)
 - i. Heat flux testing of materials
 - ii. Surface morphology changes in materials (fuzz etc.)
- 3. Long pulse, clean target and high-density operation (C6 onwards)
 - i. Material testing, surface morphology changes, hydrogen retention in low fluence
- 4. Full performance, operational domain of reactor (C7 onwards)
 - . High power, shallow angle operation, melt-layer experiments, flux dependence on PMI, high heat flux tests
 - ii. Test of first PFCs
- 5. Rad operation (C11 onwards)
- 6. High fluence operation (C12 onwards with milestone in C15)
 - i. Influence of fluence on hydrogen retention
 - End-of-life tests of PFCs

ii.

Summary

• MPEX Science exploitation will be interleaved with high-level commissioning for about 4 years after end of project (CD-4).

• First year no PMI experiments to be expected.

• After 3 ¹/₂ years rad operation can start.

• High fluence reached and all mission need requirements fulfilled after 5 years.

