Code Validation Experiments

Dwaipayan Dasgupta (DD) University of Tennessee, Knoxville

2nd MPEX User Research Forum September 13, 2021

Contributors:

Chao-Shou Chen, Asanka Weerasinghe, and Dimitrios Maroudas University of Massachusetts, Amherst Sophie Blondel and Brian D. Wirth University of Tennessee, Knoxville Robert D. Kolasinski Sandia National Laboratories-Livermore Karl D. Hammond University of Missouri

Dwaipayan (DD): DDasgupta@utk.edu MURF: Code validation experiments

Surface Morphological Evolution Model (< 100 eV He⁺)

Simulation Predictions and Experimental Measurements: Comparisons

Experiment: RF plasma source (2.7×10²⁰ He m⁻² s⁻¹); 75 eV He; ITER-grade W at 840°C

- The model can capture nanotendril formation at high temperature and gives good predictions of the nanotendril growth rate
- The predictions of the nanotendril width and separation are off by a factor of 5 8.

Representative Simulation Results: Incubation Time

Irradiation conditions: 2.7×10²⁰ He m⁻² s⁻¹; 75 eV He; ITER-grade W

Representative Simulation Results: Effect of Bubble Bursting

1.60×10²⁶ m⁻² s⁻¹

-2.5 μs, 100 eV, 660 °C

- RF plasma-exposed surface features depend weakly on nanobubble size at low fluence, but show a much stronger dependence at high He fluence
- Bubble bursting/pinhole formation plays an important role in surface morphological evolution

Representative Simulation Results: Effect of Temperature

- Plasma exposure duration is critical as opposed to the implanted helium fluence
- Fuzz can grow at temperatures lower than those reported in the literature
- Elastic softening thermal and due to helium loading leads to higher growth rate of nanotendrils
- The average helium bubble size and steady state helium content are the important factors which affect fuzz formation

Representative Simulation Results: Effect of Temperature

600°C

840°C

- Plasma exposure duration is critical as opposed to the implanted helium fluence
- Fuzz can grow at temperatures lower than those reported in the literature
- Elastic softening *thermal* and due to *helium loading* leads to higher growth rate of nanotendrils
- The average helium bubble size and steady state helium content are the important factors which affect fuzz formation

Representative Simulation Results: Steady-state He Content

[Experimental Data: K.B. Woller et al., J. Nucl. Mater. 463, 289-293 (2015)]

Grid Points

Xolotl simulations can predict He content at steady-state

 Xolotl simulations can predict He content at steady-state but further studies and benchmarking are required to capture the trend with temperature

Data Needs and Summary of Published Work on Modeling Surface Evolution

- Low energy (below sputtering limit), low flux (~10²⁰-10²¹ m⁻² s⁻¹) experiments under steady-state plasma:
 - In situ measurement of He content and surface (roughness) evolution
 - Surface charecterization, He bubble size measurement, elastic moduli and stress state measurements for samples exposed to varying fluence and temperature
- Experiments under dynamic conditions ELM-like

Questions & Comments?

Further reading:

- On surface morphological evolution model: D. Dasgupta et al., Nucl. Fusion 59, 086057 (2019).
- Effect of temperature on surface morphology: D. Dasgupta et al., Surf. Sci. 698, 121614 (2020).
- Effect of bubble bursting on surface morphology: C.-S. Chen et al., J. Appl. Phys. 129, 193302 (2021).
- Effect of elastic softening on surface morphology: C.-S. Chen et al., Nucl. Fusion 61, 016016 (2021).
- Elastic properties of He-implanted tungsten : A. Weerasinghe *et al.*, ACS Appl. Mater. Interfaces **12**, 22287-22297 (2020).
- Steady-state He content prediction by Xolotl simulations: S. Blondel et al., Nucl. Fusion 58, 126034 (2018).
- Large-scale MD simulations to study subsurface bubble growth: K. D. Hammond *et al.*, Nucl. Fusion **60**, 066035 (2020).