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Surface Morphological Evolution Model (< 100 eV He*)
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= Helium content in the system
= Average helium bubble size
= Thermomechanical properties




Simulation Predictions and Experimental Measurements: Comparisons

= Experiment: RF plasma source (2.7x10%° He m= s1); 75 eV He; ITER-grade W at 840°C
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= The model can capture nanotendril formation at high temperature and gives good predictions of the
nanotendril growth rate
= The predictions of the nanotendril width and separation are off by a factor of 5 - 8.
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Representative Simulation Results: Incubation Time

= |rradiation conditions: 2.7x10%° He m2 s'; 75 eV He; ITER-grade W

Simulated RMS roughness evolution:
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[T.J. Petty et al., Nucl. Fusion 55, 093033 (2015)]
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Representative Simulation Results: Effect of Bubble Bursting

e h OlleS _I_—@— w small holes
—H- w large holes
— w/o holes A wioholes |

o

: ’ "Expt}‘ t=-30min

-

:
\

5 10 i

0 0.4 0.8 1.2
£ (l“l'm) Np (1015 m—2)

I = I

s = RF plasma-exposed surface features depend weakly on nanobubble size
avé® | at low fluence, but show a much stronger dependence at high He fluence

1.60x10*° m=sT . ) = Bubble bursting/pinhole formation plays an important role in surface
--2.5ps, 100 eV, 660 °C morphological evolution




Representative Simulation Results: Effect of Temperature
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= Plasma exposure duration is critical as opposed to the implanted helium fluence
= Fuzz can grow at temperatures lower than those reported in the literature

= Elastic softening — thermal and due to helium loading - leads to higher growth rate of nanotendrils

= The average helium bubble size and steady state helium content are the important factors which affect
fuzz formation




Representative Simulation Results: Effect of Temperature
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= Plasma exposure duration is critical as opposed to the implanted helium fluence
= Fuzz can grow at temperatures lower than those reported in the literature

= Elastic softening — thermal and due to helium loading - leads to higher growth rate of nanotendrils

= The average helium bubble size and steady state helium content are the important factors which affect
fuzz formation




Representative Simulation Results: Steady-state He Content
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[Experimental Data: K.B. Woller et al., J. Nucl. Mater. 463, 289-293 (2015)]

= Xolotl simulations can predict He content at steady-state




Representative Simulation Results: Steady-state He Content
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= Xolotl simulations can predict He content at steady-state but further studies and benchmarking are
required to capture the trend with temperature




Data Needs and Summary of Published Work on Modeling Surface Evolution

= Low energy (below sputtering limit), low flux (~102°-102" m-2s!) experiments under steady-state plasma:
= |n situ measurement of He content and surface (roughness) evolution
= Surface charecterization, He bubble size measurement, elastic moduli and stress state measurements
for samples exposed to varying fluence and temperature
= Experiments under dynamic conditions — ELM-like

Questions & Comments?

Further reading:

= On surface morphological evolution model: D. Dasgupta et al., Nucl. Fusion 59, 086057 (2019).[%]

= Effect of temperature on surface morphology: D. Dasgupta et al., Surf. Sci. 698, 121614 (2020).%]

= Effect of bubble bursting on surface morphology: C.-S. Chen et al., J. Appl. Phys. 129, 193302 (2021).[-]

= Effect of elastic softening on surface morphology: C.-S. Chen et al., Nucl. Fusion 61, 016016 (2021).%

= Elastic properties of He-implanted tungsten : A. Weerasinghe et al., ACS Appl. Mater. Interfaces 12,
22287-22297 (2020).

= Steady-state He content prediction by Xolotl simulations: S. Blondel et al., Nucl. Fusion 58, 126034 (2018).[2

= Large-scale MD simulations to study subsurface bubble growth: K. D. Hammond et al., Nucl. Fusion 60,
066035 (2020).[~]

Dwaipayan (DD): DDasgupta@utk.edu MURF: Code validation experiments 717


https://doi.org/10.1088/1741-4326/ab22cb
https://doi.org/10.1016/j.susc.2020.121614
https://doi.org/10.1063/5.0050195
https://doi.org/10.1088/1741-4326/abbf64
https://doi.org/10.1021/acsami.0c01381
https://doi.org/10.1088/1741-4326/aae8ef
https://doi.org/10.1088/1741-4326/abb2d3

